ITC / News / Narodowe Centrum Nauki / Molekularne mechanizmy procesu fotosyntezy w warunkach ekstremalnych

Molekularne mechanizmy procesu fotosyntezy w warunkach ekstremalnych

Molekularne mechanizmy procesu fotosyntezy w warunkach ekstremalnychAgnieszka.Rajdaczw., 02/12/2021 - 12:52 Kod CSS i JS */

Energia słoneczna napędza życie na naszej planecie poprzez fundamentalny proces fotosyntezy. Naturalne fotosystemy stanowią duże membranowe kompleksy białkowe, wiążące doskonale zorganizowane przestrzennie układy kofaktorów transportu elektronowego i pigmentów, tworząc w ten sposób wysoko wydajne makromolekularne nanomaszyny do przekształcania energii słonecznej w energię chemiczną. Konwersja energii słonecznej w paliwo jest prawdopodobnie najbardziej atrakcyjnym sposobem produkcji czystej energii w dobie coraz większego zapotrzebowania energetycznego naszej cywilizacji. W erze globalnych zmian klimatycznych, których dobitnie doświadczamy na co dzień, istnieje pilna potrzeba, aby dogłębnie zrozumieć molekularne mechanizmy procesu fotosyntezy, szczególnie w warunkach ekstremalnych, podobnych do tych, w których powstały pierwsze formy życia.

fot. Michał ŁepeckiStruktura aparatu fotosyntetycznego jednokomórkowego krasnorostu Cyanidioschyzon merolae, ekstremofilnej mikroalgi z wulkanicznych gorących źródeł, dowodzi, iż ten organizm jest ewolucyjnym ogniwem pośrednim pomiędzy cyjanobakteriami a roślinami wyższymi. Nasz projekt miał na celu poznanie, w jaki sposób aparat fotosyntetyczny tej termofilnej i kwasolubnej mikroalgi reguluje swoją funkcję w ekstremalnych warunkach środowiskowych. W tym celu zbadaliśmy: (1) dynamiczne zmiany struktury układów antenowych (wychwytujących energię słoneczną) związanych z fotosystemami I i II (PSI i PSII) w komórkach C. merolae w zmieniających się warunkach ilości i jakości spektralnej światła; (2) szybkość wymiany cząsteczek substratowych wody w centrum katalitycznym PSII (enzymu rozszczepiającego wodę pod wpływem światła słonecznego); (3) poznanie roli karotenoidów: pigmentów zidentyfikowanych w kompleksach PSI i PSII z C. merolae, chroniących aparat fotosyntetyczny przed nadmiarem światła. Dodatkowym celem było (4) zbadanie kinetyki wczesnych procesów konwersji energii słonecznej, w tym szlaków transferu zaabsorbowanych kwantów światła w fotosystemach wyizolowanych z tej ekstremofilnej mikroalgi.

fot. Michał ŁepeckiPokazaliśmy, że oba fotosystemy wyizolowane z tego fascynującego ekstremofila cechują się wyjątkową stabilnością w ekstremalnych warunkach pH, temperatury i oświetlenia. Co więcej, wydajność kwantowa enzymu rozszczepiającego wodę (PSII) pozostaje niezmieniona niezależnie od warunków oświetlenia. Stosując wysoce interdyscyplinarne podejście badawcze z użyciem biochemicznych, biofizycznych, proteomicznych i zaawansowanych metod mikroskopowego obrazowania pojedynczych kompleksów fotosyntetycznych określiliśmy następujące molekularne mechanizmy fotoadaptacji apaparatu fotosyntetycznego C. merolae do zmiennych warunków oświetlenia: (i), akumulacja fotoprotekcyjnych pigmentów (zeaksantyny i β-karotenu) w kompleksach antenowych oraz w fotosyntetycznych centrach reakcji; (ii), dynamiczne zmiany struktury zarówno anten, jak i centrów reakcji fotochemicznych w kompleksach PSI i PSII, na poziomach białkowym i pigmentowym, które umożliwiają wydajniejszą utylizację światła słonecznego dla metabolizmu komórkowego; i (iii) niezmieniona kinetyka reakcji fotosyntetycznego rozszczepienia wody w kompleksie PSII z C. merolae w porównaniu z jego odpowiednikami z organizmów mezofilnych.

Precyzyjne określenie molekularnych mechanizmów regulujących fotoprotekcję i wysoką stabilność aparatu fotosyntetycznego ekstremofilnego jednokomórkowego krasnorostu C. merolae jest istotne dla zrozumienia procesów wydajnej konwersji energii słonecznej i zachowania komórkowej homeostazy energetycznej w ekstremalnych warunkach środowiskowych. Zdobyta w naszym projekcie wiedza ma zatem duży potencjał translacyjny. Ułatwi ona bowiem opracowanie lepszych niż dotąd strategii wytworzenia wydajnych i stabilnych biomimetycznych urządzeń konwertujących energię słoneczną w czyste paliwo, zwykle działających w warunkach ekstremalnych, a tym samym przyczyni się do wydajniejszego wytworzenia czystej energii.

Tytuł projektu - pełny Charakterystyka struktury i funkcji aparatu fotosyntetycznego z ekstremofilnej czerwonej mikroalgi Cyanidioschyzon merolae Projekt - grupa nauk NZ Projekt - panel NZ1 Konkurs - typ konkursu OPUS Konkurs - nazwa i edycja OPUS 8 Konkurs - data ogłoszenia konkurs 15 września 2014 r. Kierownik - imię i nazwisko dr hab. Joanna Monika Kargul, prof. UW Kierownik - jednostka Centrum Nowych Technologii Uniwersytetu Warszawskiego Kierownik - dodatkowe informacje

Kierownik Laboratorium Paliw Słonecznych w Centrum Nowych Technologii Uniwersytetu Warszawskiego. Doktorat z nauk biologicznych uzyskała w 1999 r. w University of Warwick w Wielkiej Brytanii. Staż podoktorski odbyła w grupie prof. Jamesa Barbera w Imperial College London w Wielkiej Brytanii, badając strukturę i funkcję kompleksów fotosyntetycznych. Badania te zaowocowały przełomowymi odkryciami unikalnych molekularnych mechanizmów szybkiej adaptacji fotosyntetycznej do zmieniającego się środowiska. Habilitację uzyskała w 2009 r. na Wydziale Biologii UW. W 2011 r. po powrocie z Londynu do Warszawy utworzyła interdyscyplinarny, międzynarodowy zespół biologów i chemików do badań podstawowych i aplikacyjnych nad fundamentalnym procesem naturalnej fotosyntezy, jak również produkcją tzw. paliw słonecznych w biomolekularnych urządzeniach sztucznej fotosyntezy.

Kierownik - zdjęcie Projekt - zdjęcie główne Projekt - zdjęcie główne TOP 44%

Narodowe Centrum Nauki
02.12.2021 11:52
10.12.2021 12:17