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WHERE DOES THE ENERGY COME FROM? 
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ATOMIC NUCLEUS 

 

 

• Z protons 

• N neutrons 

• A = Z + N 
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HOW MUCH DOES THE NUCLEUS WEIGH? 

• Z protons 

• N neutrons 
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BINDING ENERGY 

Number of nucleons in the nucleus (mass number) 
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FISSILE ISOTOPES 

U-233 

U-235 

Pu-239 

Pu-241 
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FERTILE ISOTOPES 

Th-232  U-233 

U-234U-235 

U-238Pu-239 

Pu-238Pu-239 

Pu-240Pu-241 
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HOW TO BREAK A NUCLEUS? 

• Otto Hahn (1879-1968) 

• 17 December 1938 – first 
confirmed uranium fission 

• 15 November1945 – Noble 
Prize in chemistry 
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NUCLEAR REACTIONS WITH NEUTRONS 

(MOST IMPORTANT) 

Absorption 

• Fission(n,f) 

• Radiative capture (n,γ)  

Scattering 

• Elastic (n,n) 

• Inelastic (n,n’) 
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URANIUM FISSION 
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U-235 fission with thermal neutrons 
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WHERE DOES THE ENERGY GO? 

1 235 1

0 92 1 2 0

~30MeV~5MeV~168MeV

2,5n U Fr Fr n     

2014-01-28 

11 

© 2011 Adam Rajewski, ZT ITC PW 

„A single atom is such a small thing that to talk about its 
energy in joules would be inconvenient. But instead of taking 
a definite unit in the same system, like 10−20 J, [physicists] 
have unfortunately chosen, arbitrarily, a funny unit called an 
electronvolt (eV) ... I am sorry that we do that, but that's the 
way it is for the physicists.” 

R. Feynman (1961) 



NEUTRON ENERGY 
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Slowing down 
(Moderation) 



CHAIN REACTION 

 

 

• Critical mass 

• Neutron management 

• Slowing down 
(moderator) 

• Turning back (reflector) 
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WHAT DO WE USE TO SLOW DOWN? 

• A perfect moderator: 

• Low atomic mass 

• Well reflects neutrons 

• Does not absorb neutrons 
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USED MODERATORS 

Hydrogen(1H) 

• In form of water 

• Absorbs neutrons – requires fuel enrichment 

Deuterium (2H, 2D) 

• As heavy water (D2O) 

• Allows to use natural uranium 

• Expensive 

Carbon 

• Usually in form of graphite 

• Can allow natural uranium usage 

Beryllium 

• Expensive 

• Toxic 

Lithium(7Li) 

• Lithium fluoride 
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ENERGY CONVERSION 

• In micro-scale: kinetic energy 

• In macro-scale: heat 

• Recovering energy = reactor cooling 

• Good coolant: 

• High specific heat 

• Low chemical activity 

• No neutron absorbtion 
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USED COOLANTS 

Air 

•Early research reactors, low output 

Water 

•Cheap and easy 

•Can be simultaneously a moderator 

•Can be directly used in power-generation circuit 

•Absorbs neutrons 

Carbon dioxide 

Helium 

•Expensive 

•Inactive 

•Can be used in high temperatures 

•Może pracować w obiegu roboczym elektrowni 

2014-01-28 

17 

© 2011 Adam Rajewski, ZT ITC PW 



COMBINATIONS 

H2O 

• PWR, BWR, VVER 

• The same volume of water is coolant and moderator 

D2O + D2O or D2O + H2O 

• CANDU reactors (Canada) 

Graphite + CO2 

• GCR, AGR – no longer produced 

Graphite+ H2O 

• RBMK – including Charnobyl-4 
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REACTION CONTROL 

• Control rods 

• Sliding into the core 

• Made of a good neutron absorber (e.g. boron) 

• Adding boric acid to the coolant (PWR) 

• Adjustments of the water (moderator) flow 
thorugh the core (BWR) 
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USED FUELS 

• Uranium-235 
• Usually as uranium dioxide (UO2) 

• Mined from natural deposits 

• Usually enriched to 4-5% U-235 

• MOX – Mixed Oxide Fuel 
• Mixture of UO2 and PuO2 

• Plutonium recycled from spent fuel elements 

• Plutonium from dismantled nuclear warheads 
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FUEL CYCLE 
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URANIUM ORE MINING 
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URANIUM ORE MINING 
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URANIUM ORE MINING 
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URANIUM ORE MINING 
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Canada 
29% 

Australia 
22% 

Kazakhstan 
9% 

Nigeria 
8% 

Russia 
8% 

Namibia 
8% 

Uzbekistan 
5% 

USA 
2% 

Ukraine 
2% 

RSA 
2% 

PRC 
2% 

Other 
3% 



URANIUM MINERALS 

Exemplary uranium minerals 

Uraninite – UO2 

Carnotite – K2(UO2)2(VO4)2·4H2O 

Autunite – CaO(UO3)2P2O5 ·12H2O 

Sklodowskite – Mg(UO2)2(HSiO4)2 ·5H2O 
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YELLOWCAKE 

 

 

• Uranium concentrate 

• ~80% U3O8 

• Chemically stable 
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URANIUM ENRICHMENT 
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URANIUM ENRICHMENT 

• There is only 0.72% U-235 in natural uranium 

• Most power reactors need 3-4% U-235 

• Enrichment = increasing U-235 content in 
uranium mass 

• Physical methods – based on mass difference 

• Enrichment carried out in UF6 gas 
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ENRICHMENT CENTRIFUGES 

• Using mass difference 

• Lighter U-235 concentrates near 
the axis 

• Centrifuge cascade needed to 
obtain proper enrichment level 

2014-01-28 

30 

© 2011 Adam Rajewski, ZT ITC PW 



CENTRIFUGE CASCADE 
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CENTRIFUGE CASCADE 
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WHAT ABOUT THE REST? 
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USAGE OF DEPLETED URANIUM 

• Biological shields (medical diagnostics) 

• Dyes 

• Aircraft counterweights 

• Armour plates 

• Armour-piercing projectiles 
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FUEL PRODUCTION 

2014-01-28 

35 

© 2011 Adam Rajewski, ZT ITC PW 



NUCLEAR FUEL – UO2 PELLETS 

      One pellet of 10g can be used to generate 600 kWh 
of electricity 

It is ca. ¼ of annual electricity consumption by one 
Polish household. 

2014-01-28 

36 

© 2011 Adam Rajewski, ZT ITC PW 



NUCLEAR FUEL 

Uraniium 
dioxide 

Fuel 
pellets 

Fuel rods 

Fuel 
bundles 
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FUEL ASSEMBLY 
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FUEL CONSUMPTION 
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NUCLEAR REACTOR 

• Device where controlled chain nuclear 
reaction occurs 

• Needs appropriate control systems 

• Needs proper cooling 
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NUCLEAR REACTOR 
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NUCLEAR REACTOR 
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NUCLEAR REACTOR 

2014-01-28 

43 

© 2011 Adam Rajewski, ZT ITC PW 



NUCLEAR REACTOR 
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REACTOR OPERATION 

• Fission is carried out within the fuel pellets 
• Radioactive fission products are contained within the 

fuel elements 
• Safety barriers: 

• Pellet structure (for solids) 
• Fuel element cladding 
• Integral coolant (primary) circuit 
• Biological shield (concrete, water) 
• Containment (concrete) 

• Heat is transferred through the cladding into coolant 
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REACTOR CONTAINMENT 
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REACTOR CONTAINMENT 
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SPENT NUCLEAR FUEL 
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SPENT NUCLEAR FUEL 

• Spent fuel elements 
hold short and medium-
lived fission products 
which keep decaying 

• They have to be cooled 
until the activity drops 
(after several years) 

• Initial storage na  pool 
next to the reactor 
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SPENT NUCLEAR FUEL 
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SPENT NUCLEAR FUEL 
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SPENT FUEL TRANSPORT 
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SPENT FUEL TRANSPORT 
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SPENT FUEL TRANSPORT 
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SPENT FUEL TRANSPORT 

„Spent nuclear fuel cask test”  
youtube.com 2014-01-28 
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SPENT FUEL TRANSPORT 

• There is a certain amount of unused U-235 in 
spent fuel elements 

• Fissile Pu-239 is formed in the fuel elements 

• Those isotopes can be recycled into fresh fuel 
elements 
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NUCLEAR FUEL RECYCLING 
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RADIOACTIVE WASTE 
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• Compressed, concentrated or combusted 

• Cemented in barrels Low-activity  

• Grinded down 

• Cemented in barrels 

Medium-
activity 

• Melted into glass blocks (vitrified) High-activity 



HOW MUCH WASTE? 

Lignite-fired PP 

• 290 kg/s lignite 
1040 Mg/h 
25,000 Mg/d 
9 mi. Mg/a 

• ~3 mi. Mg/a of ash 
 

Nuclear Power Plant, 1300 MWe 

• 30 Mg/a of fuel 

• 55,000 Mg/a of uranium ore 
 
 

• 30 Mg/a of spent fuel 

• 4 m³ high-activity waste 

• 60 m³ medium-activity waste 

• 180 m³ low-activity waste 
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WASTE DISPOSAL 



NUCLEAR SAFETY 

Extreme design reqirements 

• Design has to deal with all physically possible malfunctions 

• Safety from aircraft impact, unauthorized access etc. 

Nuclear explosion is physically impossible 

• Too low enrichment level 

• Too small neutron energy (reaction cannot develop fast enough) 

“Idiot-proofness” 

• Safety systems independent from human operators 

• Safety systems based on laws of physics not on automation prone to failures 
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ENVIRONMENTAL FOOTPRINT 
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ANNUAL RADIATION DOSE (POL) 
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Radiation of 
radon and 

products of its 
decay; 40,50% 

Earth's 
radiation; 

13,70% 
Space radiation; 

8,60% 

Natural radioactive 
isotopes within the 

body; 8,20% 

Other natural 
sources; 3,00% 

Medical diagnostics; 
25,30% 

Charnobyl disaster; 
0,40% 

Other 
artificial 
sources; 
0,30% 



10 

100 

1000 

0,1 

10000 

[mSv] 

Annual average dose from nuclear 
power industry 

0.05 mSv 
New York-Paris flight 

Year aboard the 
MIR space station 

3000-5000 mSv 
Hiroshima, Nagasaki 

1 

Natural radiation in 
various areas of the 
world 

2,2 mSv  – annual dose from 
natural sources in Poland 

0,1 mSv 
chest X-ray 

0,23 mSv tooth X-ray 

3-6 mSv  
Spine X-ray 

23 mSV Heart 
scintigraphy 

10000-100000 mSv 
Radiotherapy 

3.28 mSV average 
annual dose for a 
Polish citizen 
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SUMMARY – ADVANTAGES AND 

DISADVANTAGES OF NUCLEAR POWER 

Advantages: 

•Low share of variable cost in operation (low 
sensitiveness to fuel cost) 

•Very limited environmental footprint, no harmful gas 
emissions 

•Fuel can be purchased at stable countries 

•High reliability 

Disadvantages: 

•High investment cost 

•Expensive and cumbersome decomissioning 

•Social problems 

•Low flexibility (not suitable for peaking operation) 

•Waste issue not fully resolved 

2014-01-28 

65 

© 2011 Adam Rajewski, ZT ITC PW 



THANK YOU! 
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