Maciej JAWORSKI <u>Piotr ŁAPKA</u> Piotr FURMAŃSKI	
Pomiary eksperymentalne i modelowanie zasobnika ciepła wykonanego z kompozytu gips - PCM	
б	

1. Wprowadzenie

пс

۲

Wprowadzenie Czynniki wpływające na warunki termiczne wewnątrz budynku - Klimat (temperatura zewnętrzna, wiatr, nasłonecznienie), - Struktura budynku (materiały, z których wykonana jest konstrukcja budynku oraz zastosowane materiały izolujące), - System wentylacji, - Źródła energii. Metody obniżenia zużycia energii w budynkach - Izolacje, - Zwiększenie efektywności źródeł energii, - Zwiększenie pojemności cieplnej struktury budynku: • Większa bezwładność cieplna budynku (redukcja fluktuacji temperatury wewnętrznej), Większa efektywność wykorzystania energii odnawialnej (akumulacja ciepła), • Większa efektywność free-coolingu (pochłanianie ciepła generowanego wewnątrz budynku, lepsze "wyziębienie" budynku w nocy na skutek intensywnej wentylacji). ٢ 4 ΙТС

Zwięk	szenie pojemności cieplnej budynków poprzez zastosowanie materiałów zmiennofazowych (PCM)
🗆 Mag	jazyny ciepła z PCM,
🗆 Eler	nenty konstrukcyjne z dodatkami PCM:
٠	Płyty gipsowe zawierające dodatki w postaci mikrokapsułek z PCMem, betor nasycony PCMem – magazynowanie energii w ścianach, sufitach i podłogach:
	 Absorpcja energii promieniowania słonecznego,
	 Absorpcja energii generowanej wewnątrz budynku,
٠	Elementy układów wentylacyjnych zawierające PCM – kanały wykonane z kompozytów materiał budowlany i PCM:
	 Absorpcja energii generowanej wewnątrz budynku,
	 Obniżenie lub zwiększenie temperatury powietrza wprowadzanego z zewpatrz do budynku

Rozwiązanie analityczne.					
$T(x) = T_{in} - (T_w - T_{in}) \exp\left(\frac{1}{2}\right)$	$-h_i P_c x / \rho$	$A_{c}u_{in}c_{p,c}$	·)		
Mesh size	Relative error ε				
$\Delta \mathbf{r} \times \Delta \mathbf{v} \times \Delta \mathbf{z}$ [m] Heating		Cooling			
upwind linear u	pwind	upwind	linear upwind		
$0.00500 \times 0.00500 \times 0.0100$ $2.19 \cdot 10^{-2}$ $6.81 \cdot$	10 ⁻⁵ 2	$30 \cdot 10^{-5}$	$1.04 \cdot 10^{-7}$		
$0.00250 \times 0.00250 \times 0.0050$ 2.34·10 ⁻⁵ 8.18·	10 ⁻⁸ 2	31.10 ⁻⁵	$5.84 \cdot 10^{-8}$		
$0.00125 \times 0.00125 \times 0.0025 \qquad 1.70 \cdot 10^{-5} \qquad 7.45 \cdot 10^{-5}$	10 ⁻⁸ 1	.66.10 ⁻⁵	$5.17 \cdot 10^{-8}$		

6. Wnioski

