
POWER GRID 
SUPPLYING ELECTRICITY TO THE CUSTOMERS 

AND KEEPING THE ENERGY BALANCE 
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TRANSMITTING ENERGY 

Fuel transmission – energy generation at consumer’s site 

• Fuel transport may be expensive and requires energy consumption 

• Energy conversion at site must be flexible enough to meet variable 
demand – if the demand is variable 

• Does not really work for small customers 

Electricity transmission 

• Allows to centralize generation – higher efficiencies 

• Grid development sometimes difficult and expensive 

• Transmission losses 
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WAR OF CURRENTS AC OR DC? 

DC transmission 

• Transforming into higher voltage difficult with 19th century’s 
technology 

• Promoted by Thomas Edison 

AC transmission 

• Low cost transformers – easy transmission and distribution at 
high voltages 

• Promoted by George Westinghouse & Nikola Tesla 
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DC TRANSMISSION 

EDISON’S CONCEPT 

Single voltage level 

• 110 V chosen for all equipment from generator to 
consumer due to: 

• Safety reasons 

• Impracticable voltage conversion for DC system 

Three-wire system 

• +110 V, 0 V, -110 V conductors 

High losses – low distance 

• Due to resistance only distances of up to 1 mile 
considered practicable 

• Distributed generation 
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FIRST DC LONG-DISTANCE 

TRANSMISSION LINE 

 Miesbach – Munich, 1882 

 Power from a steam engine to international 
electricity exhibition to drive an artificial 
waterfall 

 Power rating 2.5 kW (only!) 

 Length 57 km 

 Rated voltage 2000 V 
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DC GRIDS, NYC, 1880S 

 Separate system for each 
voltage level – different 
consumer groups: 

 Lighting 

 Electric motors 

 Impracticable 

 Unsustainable in urban 
environment 
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HVDC THURY SYSTEM 

 Conversion into high voltage DC (HVDC) for 
transmission with series-connected motor-generator 
sets 

 Series-connected consumers 

 First operated in 1889, 15 systems in operation by 
1913 

 High energy loss in rotating machinery 

 High maintenance needs 

 Not practical 
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HVDC THURY SYSTEM 9 
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AC GRID CONCEPT 

Generation 
Medium 
Voltage 

Transmission 
High Voltage 

Consumption 
Medium/Low 

Voltage 

Step-up 
transformer 

Step-down 
transformer 

Three-phase system patented by Nikola Tesla 1887-88 
First transmission of AC 3-phase current: 1891, Frankfurt 
Voltage: 25 kV, overhead line 
Distance: 175 km, route Lauffen – Frankfurt 
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WHY THREE-PHASE? 

Cheap 

• Polyphase cheaper than single-phase – less conductor 
material 

Stable 

• In a multiphase system with balanced loads on each 
phase there is almost no current in the neutral 
conductor – allows to minimize its cross-section 

• At balanced phase loads vibrations of three-phase 
equipment (generators!) are reduced 

• 3 is the lowest number of phases for a stable system 
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INCREASING THE VOLTAGE 

110 kV 

• 1907, Croton-Grand Rapids, Michigan, USA – first tests 

• 1912, Lauchhammer-Riesa, Germany – first commercial operation 

220 kV 

• 1923, Pit River – Cottonwood – Vaca Dixon, California, USA 

• 1929, Brauweiler-Hoheneck, Germany 

380 kV 

• 1952, Harsprånget – Hallsberg, Sweden 

735 kV 

• 1965, Hydro-Québec, Canada 

1150 kV – the highest operational voltage 

• 1988, Ekibastuz-Kokshetau, USSR (now Kazakhstan) 
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OVERHEAD TRANSMISSION 

Cheap 

Easy to build 

Low capacitance losses 

…but corona discharge losses present… 

…and it is hard to construct in a built-up area 
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UNDERGROUND LINES 

Densely populated urban areas  

Areas where land is unavailable or planning consent is difficult  

Rivers and other natural obstacles  

Land with outstanding natural or environmental heritage  

Areas of significant or prestigious infrastructural development  

Land whose value must be maintained for future urban 
expansion and rural development  
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SOME ADVANTAGES OF UNDERGROUND 

POWER CABLES: 

Less likely damage from severe weather 
conditions (mainly wind and freezing)  

Greatly reduced electromagnetic fields 
(EMF) emission (additional shielding) 

Underground cables need a narrower 
surrounding strip of about 1- 10 meters 
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MODERN HVDC SYSTEMS 

 Introduction of mercury valves in 1930s-1940s 
allowed to easily convert AC into HVDC 

 Now mercury-based equipent replaced by 
thyristors 

 Popularized after world war II for limited 
applications 

 Used for transmission between two AC systems 
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HVDC VS AC TODAY 

Cost 

• HVDC transmission line cheaper (more power per conductor) 

• AC substations cheaper 

• HVDC better for long-distance routes 

Losses 

• Smaller losses at HVDC lines 

Capacitance 

• At HVDC no capacitance losses in long (undersea) cables 

Reliability 

• HVDC less reliable due to extra conversion equipment 

• No overload capacity for inverters (HVDC lines) 
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MODERN HVDC 

APPLICATIONS 

Interconnection 

• Links between unsynchronized AC systems 

• Links between AC systems with different 
frequency 

• Undersea cables 

• Back-to-back (B2B) DC links („zero” length) 

Long haul point-to-point lines 

• Bulk power transmission from large remote 
sources (hydro power, off-shore wind farms) 
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MODERN HVDC 

DESIGN 

Monopole 

• Return by earth (possibly with metallic conductor) 

Bipolar 

• Pair of conductors at high potential with respect to the ground, 
opposite polarity 

Rectifying 
system 

Transmission 
line 

Inverting 
system 
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HVDC LINKS 

IN EUROPE 
Existing 
Under construction 
Planned 
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PACIFIC 

DC INTERTIE 

 Delivering hydroelectric power to Southern 
California 

 Jointly developed by GE and ASEA 

 1342 km overhead line, bipolar, 525-550 kV 

 Joint capacity: 

 2 GW in bipolar mode 

 1.55 GW with earth return 

 2 inverter stations, 2 grounding stations 
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ELECTRIC GRIDS TODAY 

Electricity Generation 

• Power stations – centralized and distributed 

Electricity Transmission 

• Overhead lines, 220 kV and more 

• Some DC links (e.g. undersea, between non-synchronized systems) 

Electricity Distribution 

• Overhead and cable lines, 110 kV and less 

System Control 

• Maintaining demand-supply balance 
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ELECTRICITY FLOW 

Generation 
Medium Voltage (2 – 30 kV) 

Transmission 
High Voltage (220-1150 kV) 

Distribution 
Medium (High) Voltage (6-110 kV) 

Consumption 
Low or Medium Voltage (0.4, 6, 15 kV) 
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GOOD TRANSMISSION SYSTEM 

High voltage – low losses 

• Today 400 kV lines 

Redundancy – high supply security 

• Closed loops 

Availability of balancing power 

• Peakload power stations in all control areas 

Available to all users (generators, distributors) 

• Independent TSO 
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ELECTRIC GRID IN POLAND 

Transmission system 
Operated by PSE-Operator 

• Single extra-high voltage line 750 kV – 114 km (not in operation) 

• Extra-high voltage network 400 kV – 66 lines, 4920 km 

• High-voltage network 220 kV – 165 lines, 7919 km 

Distribution system 

Operated by local Distribution System Operators 

• High-voltage network 220 kV – 232 km 

• High-voltage network 110 kV – 32,475 km 

• Medium voltage networks – 300,511 km 

• 15 kV (most popular) 

• Local systems on 60 kV (Silesia), 30 kV (Hel Peninsula), 20 kV, 10 kV 

• 6 kV (mostly old districts of cities, no longer developed, replaced with 15 kV) 

• Low voltage network 0.4 kV (230/400 V) – 423,886 km 
Source: Obwieszczenie Ministra 
Gospodarki z dnia 14 sierpnia 
2009 r. w sprawie sprawozdania z 
wyników nadzoru nad 
bezpieczeństwem zaopatrzenia w 
energię elektryczną, M.P. 2009 nr 
56, poz. 771 
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750 kV 
400 kV 
220 kV 
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POLISH TRANSMISSION SYSTEM 29 
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POLISH CROSS-BORDER CONNECTIONS 

Germany 

• Krajnik-Vierraden, 2 × 220 kV, 930 MVA (planned upgrade to 400 kV) 

• Mikułowa-Hagenwerder/Kisdorf, 2 × 400 kV, 2 × 1385 MVA 

• Turów-Hirschwelde, 110 kV 

Czech Republic 

• Boguszów-Porici, 110 kV 

• Kudowa-Nachod, 110 kV 

• Wielopole-Albrechtice/Nošovice, 2 × 400 kV, 2 × 1385 MVA 

• Bujaków/Kopanina-Liskovec, 2 × 220 kV, 394+362 MVA 

Slovakia 

• Krosno/Iskrzynia – Leměšany, 400 kV, 2 × 1385 MVA 

Ukraine 

• Rzeszów-Khmelnitskaya NPP, 750 kV, 1300 MVA (shut down in 1993, to be recommissioned with DC link) 

• Zamość-Dobrotwór, 220 kV, 362 MVA (synchronized with Polish grid – radial system) 

Belarus 

• Wolka Dobrzyńska-Brest, 110 kV (provate line connected to Polish distribution grid) 

• Białystok-Ros, 220 kV, 362 MVA (shut down in 2004, planned for reconstruction with DC link to Narew) 

Sweden 

• Słupsk-Starno, 450 kV DC, 600 MW 
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D ISTRIBUTION SYSTEM OPERATORS IN POLAND 31 
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GRID STABILITY ISSUE 
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SYSTEM BALANCING 

“Traditional” system 

• Known generation capacity 

• Predictable load patterns 

• Reserves mainly for emergencies 

Modern system 

• Generation capacity difficult to predict 

• Increasing load volatility 

• Reserves needed for both emergency situations and 
normal operation to compensate for unpredictable 
generation 
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THE CHALLENGE 
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Power System requirements 

Intermediate load 

Base load 

Peak load 
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Regulation Holistic view on power systems 
 
1. ELECTRICITY PRODUCTION  

• Matching supply and demand  
• Optimal capacity mix for matching 

the load 
 

 Electricity market is the main tool 
 
2. SYSTEM STABILITY 

• Balancing 
• Regulation (50/60 Hz) 
• Voltage control 
• Contingency reserves 

 
 System operator responsible 
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ENTSO-E FREQUENCY 

CONTROL SCHEME 

• ~5 % of installed grid 
capacity (MW) 

• Prepare for 
contingencies and 
forecast error 

• More with increasing 
wind power share 

• Manual control 
• Reaction time agreed 

based on technology 
capability typical 
reaction time from 10 
min up to 4 h 

• > largest plant size (MW) 
• Contingency reserve 
• Spinning reserve with 

automatic frequency response 
(governor) 

• Reaction in a few seconds, 
fully activated in 15-30 s. 

• ~1–2% of grid capacity (MW) 
• More with increasing wind power 

share 
• 2 functions: 
 - Frequency regulation 
 - Free primary contingency 

reserves 
• Dispatcher controlled (AGC) 
• Reaction in 30 seconds, fully 

activated in a few minutes 
5-30 
sec. 

30sec 
-10min 

Beyond 
10min  
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NEW ENTSO-E  

VOCABULARY 

Frequency 
Containment 

Frequency 
Restoration 

 
Replacement 
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THE THREAT 
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WIND POWER VARIABILITY 

E.ON-NETZ, 2004 
Source: E.ON-Netz 39 
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WIND POWER FORECASTING 

ERROR, E.ON-NETZ, 2004 

8 h forecasts, 15 min resolution 

Source: E.ON-Netz 
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DENMARK – “PERFECT” WIND 

POWER INTEGRATION 

Source: J. Klimstra, M. Hotakainen 
“Smart Power Generation” 
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SUPER-GRID “SOLUTION”? 42 
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SOLAR POWER IMPACT 43 
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GENERATION POWER & SYSTEM 

RESERVES IN 2011 

2014-01-28 

Cold reserve 
Centrally-dispatched 

Spinning reserve 
Centrally-dispatched 

Average load 
Centrally-dispatched 

Average load 
Other 

Source: PSE-Operator S.A. 
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TYPICAL DAILY SYSTEM LOAD 

(WEEKDAY) 
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LOAD CHANGE RATES  

(15 MIN RESOLUTION) 
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E.ON NETZ 

DECEMBER 2004 
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LOAD VARIATION 

[MW/H] 

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

0:00 6:00 12:00 18:00 0:00

Normal With Wind

51 

© 2013 ADAM RAJEWSKI, ITC PW. 



GRID (IN)STABILITY 

4 NOVEMBER 2006 

After disconnecting Conneforde-Diele 380 kV line in 
Germany (to let a ship pass) UCTE system broke into 
3 unsynchronized sub-systems. 
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GRID (IN)STABILITY 

4 NOVEMBER 2006 
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GRID (IN)STABILITY 

4 NOVEMBER 2006 
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GRID (IN)STABILITY 

4 NOVEMBER 2006 
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Wind turbines 
disconnect due to 

excessive frequency 
deviation 

Wind turbines 
gradually reconnect 
as operators restore 

frequency 

Processes beyond operators’ control! 



SOLUTIONS 
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POSSIBLE SOLUTIONS 

Increasing reserves 

• Additional spinning reserves  
inevitable energy losses 

• Reserve capacities 

Consumption control 

• Demand Side Management 
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OPERATING RESERVE REQUIREMENT 

UK JANUARY 2020 

Basic reserve – largest in-feed loss 

Reserve for response – demand forecast error and  
conventional generation loss 

  

Reserve for wind – managing wind variablility 

Highly varying reserve requirement due to wind 

Reserve requirement in the Gone Green scenario, National Grid 2011 
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GRID-STABILITY  

POWER PLANTS 

Required features 

• Short start-up time (unscheduled) 

• High flexibility 

• High start-up reliability 

• Low investment cost 

Possible technologies 

• Hydroelectric plants 

• Reciprocating engines 

• Open cycle gas turbines 

• CAES 
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TECHNICAL SOLUTIONS FOR 

GRID STABILITY PLANT 

1. Dedicated stand by grid emergency reserve  

• Used only in major technical or market failure – i.e. last resort / 
insurance capacity that helps when system otherwise fails  

2. Dynamic grid stability reserve  

• Flexible power plants for emergency capacity and active use in 
ancillary services 

• E.g. Elering Kiisa 250 MW grid stability plant 

3. Multipurpose capacity  

• Providing emergency reserves, ancillary services and energy 
depending on the need 

• E.g. Danish examples of combining combustion engine power 
plant, conventional boiler, heat accumulator (storage) and 
electric boiler 
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KIISA DYNAMIC GRID STABILITY 

POWER PLANT, ESTONIA 

 EPC cost 129 M€ 

 Dual-fuel installation (LFO/natural gas) 

 27 reciprocating engines, totally 250+ MW 

 Start-up time to full power: 5 minutes 

 Owner & operator: Elering AS, Estonian TSO 

 Planned operation up to 200 h/a 
Emergency operation only  
(identified by market failure) 
 

 500 €/kW of installed capacity 
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THANK YOU! 
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