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WHERE DOES THE ENERGY COME FROM!?

s W
all

E = mc?



ATOMIC NUCLEUS

X

ey W =

* Z protons A

* N neutrons

e A=/Z+N Z




HOwW MUCH DOES THE NUCLEUS WEIGH?
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BINDING ENERGY
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)\ / FISSILE ISOTOPES

U-233

U-235

Pu-239

Pu-241




O\\/ FERTILE ISOTOPES

Th-232 =» U-233

U-234=>»U-235
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U-238=»Pu-239

Pu-238=>»Pu-239

Pu-240=»Pu-241
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Otto Hahn (1879-1968)

e 17 December 1938 — first
confirmed uranium fission

* 15 November1945 — Noble
Prize in chemistry
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NUCLEAR REACTIONS WITH NEUTRONS
(MOST IMPORTANT)

i

Absorption

e Fission(n,f)
e Radiative capture (n,y)

Scattering

e Elastic (n,n)

e Inelastic (n,n’)
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URANIUM FISSION
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WHERE DOES THE ENERGY GO?

ﬂ’l -g

235 1
n+92 U —>Fr1+Fr2+2,50n+ 4

168 MeV ~5MeV  ~30MeV

,A single atom is such a small thing that to talk about its
energy in joules would be inconvenient. But instead of taking
a definite unit in the same system, like 10729 J, [physicists]
have unfortunately chosen, arbitrarily, a funny unit called an
electronvolt (eV) ... | am sorry that we do that, but that's the

way it is for the physicists.”
R. Feynman (1961)



Slowing down

(Moderation)
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NEUTRON ENERGY
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1st Generation

2nd Generation (¥
/N
3rd Generation (" '™

4th Generation (= (-

@ Uranium-235 atom ¢ neutron
4
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CHAIN REACTION

* Critical mass
 Neutron management

e Slowing down
(moderator)

e Turning back (reflector)
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WHAT DO WE USE TO SLOW DOWN?

e

.
/

* A perfect moderator:
* Low atomic mass
* Well reflects neutrons
* Does not absorb neutrons



USED MODERATORS

o

Hydrogen(tH)

e In form of water
* Absorbs neutrons — requires fuel enrichment

Deuterium (2H, 2D)

e As heavy water (D,0)
¢ Allows to use natural uranium
* Expensive

e Usually in form of graphite
e Can allow natural uranium usage

Beryllium

® Expensive
e Toxic

e Lithium fluoride
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ENERGY CONVERSION

* |[n micro-scale: kinetic energy
* |[n macro-scale: heat

* Recovering energy = reactor cooling

* Good coolant:
* High specific heat
* Low chemical activity
* No neutron absorbtion



USED COOLANTS

e Early research reactors, low output

e Cheap and easy

¢ Can be simultaneously a moderator

e Can be directly used in power-generation circuit
® Absorbs neutrons

Carbon dioxide

Helium

* Expensive

e Inactive

e Can be used in high temperatures

* Moze pracowac¢ w obiegu roboczym elektrowni

© 2011 Adam Rajewski, ZT ITC PW 2014-01-28



\V COMBINATIONS
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H,0

e PWR, BWR, VVER
e The same volume of water is coolant and moderator

D,O0 +D,0 or D,O0 +H,0

e CANDU reactors (Canada)

Graphite + CO, -

e GCR, AGR —no longer produced

Graphite+ H,0 |

e RBMK —including Charnobyl-4
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REACTION CONTROL

Control rods
 Sliding into the core
 Made of a good neutron absorber (e.g. boron)

e Adding boric acid to the coolant (PWR)

e Adjustments of the water (moderator) flow
thorugh the core (BWR)
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USED FUELS
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* Uranium-235
* Usually as uranium dioxide (UO,)

 Mined from natural deposits
e Usually enriched to 4-5% U-235

* MOX — Mixed Oxide Fuel
* Mixture of UO, and PuO,
e Plutonium recycled from spent fuel elements
* Plutonium from dismantled nuclear warheads



FUEL CYCLE
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URANIUM ORE MINING
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URANIUM ORE INING
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URANIUM ORE MINING

STERANY NA SWIECIE
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URANIUM ORE MINING
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URANIUM MINERALS

Carnotite — K,(UO,),(VO,),"4H,0




YELLOWCAKE

* Uranium concentrate
* ~80% U;0,
* Chemically stable



URANIUM ENRICHMENT
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URANIUM ENRICHMENT
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* Thereis only 0.72% U-235 in natural uranium

Most power reactors need 3-4% U-235

Enrichment = increasing U-235 content in
uranium mass

Physical methods — based on mass difference
Enrichment carried out in UF, gas



ENRICHMENT CENTRIFUGES
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e Using mass difference

* Lighter U-235 concentrates near
the axis

e Centrifuge cascade needed to
obtain proper enrichment level
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CENTRIFUGE CASCADE
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CENTRIFUGE CASCADE
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WHAT ABOUT THE REST?
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USAGE OF DEPLETED URANIUM
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* Biological shields (medical diagnostics)

¢ D y e S _ DEPLETED

* Aircraft counterweights
* Armour plates AR
* Armour-piercing projectiles [ [

M128 PRIMER

M148A1B1
STEEL CASE
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FUEL PRODUCTION

ined in
Stainless steel

i DISPOSAL
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One peIIet of 10g can be used to generate 600 kWh
of electricity

It is ca. % of annual electricity consumption by one
Polish household.
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NUCLEAR FUEL

' Uraniium
dioxide

bundles
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FUEL ASSEMBLY
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Source: Babcock and Wilcox Company
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FUEL CONSUMPTION
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NUCLEAR REACTOR
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e Device where controlled chain nuclear
reaction occurs

* Needs appropriate control systems
* Needs proper cooling



NUCLEAR REACTOR

Typical Pressurized Water Reactor

Source: U.S. Nuclear Regulatory Commission
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NUCLEAR REACTOR
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NUCLEAR REACTOR
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NUCLEAR REACTOR
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REACTOR OPERATION
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*“Fission is carried out within the fuel pellets

* Radioactive fission products are contained within the
fuel elements
e Safety barriers:
e Pellet structure (for solids)
* Fuel element cladding
* Integral coolant (primary) circuit
* Biological shield (concrete, water)
e Containment (concrete)

* Heatis transferred through the cladding into coolant
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REACTOR CONTAINMENT

MSC/PATRAN Version 7.6
Fringe: AIRCRAFT_3, Time=0.206: Displacements, Translational-(NON-LAYERED) (MAG)
Deform: AIRCRAFT_3, Time=0.206: Displacements, Translational-(NON-LAYERED)
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default_Fringe :
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D\ REACTOR CONTAINMENT

Big-boys.com
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Hur hallbara ar kralistationerna, da?

Har ar etr nvit test med elt F4 plan
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SPENT NUCLEAR FUEL
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SPENT NUCLEAR FUEL

Lo

~“Spent fuel elements
hold short and medium-
lived fission products
which keep decaying

* They have to be cooled
until the activity drops
(after several years)

* Initial storage na pool
next to the reactor
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SPENT NUCLEAR FUEL




SPENT NUCLEAR FUEL
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\‘ SPENT FUEL TRANSPORT

testy pojemnikéw
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SPENT FUEL TRANSPORT
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= ) | / SPENT FUEL TRANSPORT
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SPENT FUEL TRANSPORT

LSpent nuclear fuel cask test” =
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SPENT FUEL TRANSPORT
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e Thereis a certain amount of unused U-235 in
spent fuel elements

e Fissile Pu-239 is formed in the fuel elements

 Those isotopes can be recycled into fresh fuel
elements



NUCLEAR FUEL RECYCLING
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RADIOACTIVE WASTE

Medium-
activity

High-activity
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e Compressed, concentrated or combusted

e Cemented in barrels

e Grinded down
e Cemented in barrels

e Melted into glass blocks (vitrified)
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HOW MUCH WASTE?

e

Lignite-fired PP Nuclear Power Plant, 1300 MWe
e 290 kg/s lignite * 30 Mg/a of fuel
1040 Mg/h * 55,000 Mg/a of uranium ore
25,000 Mg/d
i. M
9 mi. Mg/ e 30 Mg/a of spent fuel
* ~3 mi. Mg/a of ash .

4 m? high-activity waste
* 60 m? medium-activity waste
* 180 m? low-activity waste
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¥ warstwey wisrzchnie
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NUCLEAR SAFETY

Extreme design reqirements

e Design has to deal with all physically possible malfunctions
e Safety from aircraft impact, unauthorized access etc.

Nuclear explosion is physically impossible |

¢ Too low enrichment level

e Too small neutron energy (reaction cannot develop fast enough)

“Idiot-proofness”

e Safety systems independent from human operators
e Safety systems based on laws of physics not on automation prone to failures
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O\ / ENVIRONMENTAL FOOTPRINT
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Charnobyl disaster; Other
0,40% artificial
urces;

Other natural
sources; 3,00%

Natural radioactive
isotopes within the
body; 8,20%

Space radiation;
8,60%
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DOSE (POL)
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64

Year aboard the
MIR space station

3.28 mSV average
annual dose for a
Polish citizen 3-6 mSv

Spine X-ray

0,23 mSv tooth X-ray

0.05 mSv

New York-Paris flight 0,1 mSv
chest X-ray

Annual average dose from nuclear

5 2014-01-28
power industry




\ ) SUMMARY - ADVANTAGES AND
. DISADVANTAGES OF NUCLEAR POWER

Advantages:

e Low share of variable cost in operation (low
sensitiveness to fuel cost)

e Very limited environmental footprint, no harmful gas
emissions

e Fuel can be purchased at stable countries
e High reliability

Disadvantages:

e High investment cost

e Expensive and cumbersome decomissioning

e Social problems

e Low flexibility (not suitable for peaking operation)
e Waste issue not fully resolved
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THANK YOU!
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